วันศุกร์ที่ 9 กันยายน พ.ศ. 2559

ปิโตรเลียม คือ สารที่เกิดขึ้นตามธรรมชาติ เป็นของผสมของโฮโดรคาร์บอนชนิดต่างๆ ที่ยุ่งยากและซับซ้อน ทั้งที่อยู่ในสภาพของแข็ง ของเหลว และก๊าซ หรือทั้งสามสภาพปะปนกัน แต่เมื่อต้องการจะแยกประเภทออกเป็นปิโตรเลียมชนิดต่างๆ จะใช้คำว่า น้ำมันดิบ (Crude oil) ก๊าซธรรมชาติ (Natural gas) และก๊าซธรรมชาติเหลว (Condensate) โดยปกติน้ำมันดิบและก๊าซธรรมชาติมักจะเกิดร่วมกันในแหล่งปิโตรเลียม แต่บางแหล่งอาจมีเฉพาะน้ำมันดิบ บางแหล่งอาจมีเฉพาะก๊าซธรรมชาติก็ได้ ส่วนก๊าซธรรมชาติเหลวนั้นหมายถึง ก๊าซธรรมชาติในแหล่งที่อยู่ลึกลงไปใต้ดินภายใต้สภาพอุณหภูมิและความกดดันที่สูง เมื่อถูกนำขึ้นมาถึงระดับผิวดินในขั้นตอนของการผลิต อุณหภูมิและความกดดันจะลดลง ทำให้ก๊าซธรรมชาติกลายสภาพไปเป็นของเหลว เรียกว่า ก๊าซธรรมชาติเหลว

การกำเนิดปิโตรเลียม
เมื่อหลายล้านปี ทะเละเต็มไปด้วยสัตว์ และพืชเล็ก ๆ จำพวกจุลินทรีย์ เมื่อสิ่งมีชีวิตตายลงจำนวนมหาศาล ก็จะตกลงสู่ก้นทะเล และถูกทับถมด้วยโคลน และทราย
แม่น้ำ จะพัดพากรวดทราย และโคลนสู่ทะเล ปีละหลายแสนตัน ซึ่งกรวด ทราย และโคลน จะทับถมสัตว์ และพืชสลับทับซ้อนกัน เป็นชั้น ๆ อยู่ตลอดเวลา นับเป็นล้านปี
การทับถมของชั้นตะกอนต่าง ๆ มากขึ้น จะหนานับร้อยฟุต ทำให้เพิ่มน้ำหนักความกดและบีบอัด จนทำให้ทราย และชั้นโคลน กลายเป็นหินทราย และหินดินดาน ตลอดจนเกิดกลั่นสลายตัว ของซากสัตว์ และพืชทะเล โดยมีจุลินทรีย์บางชนิดช่วยย่อยสลายในสภาวะที่ไม่มี ออกซิเจน (Anaerobic process) ภายใต้อิทธิพลของอุณหภูมิ และความดันสูง ในชั้นหินภายใต้พื้นโลก กลายเป็นน้ำมันดิบ และก๊าซธรรมชาติ
น้ำมันดิบ และก๊าซธรรมชาติ มีความเบา จะเคลื่อนย้าย ไปกักเก็บอยู่ในชั้นหินเนื้อพรุน เฉพาะบริเวณที่สูงของโครงสร้างแต่ละแห่ง และจะถูกกักไว้ด้วยชั้นหินเนื้อแน่น ที่ปิดทับอยู่
พับมุม: ข้อแตกต่างระหว่างถ่านหินกับปิโตรเลียม คือ   ถ่านหิน เป็นเชื้อเพลิงที่ประกอบด้วยอะตอมของคาร์บอน ไฮโดรเจน ออกซิเจนกำมะถัน ดังนั้นถ่านหิน จึงไม่จัดเป็นสารประกอบไฮโดรคาร์บอน ถ่านหินเกิดจากการทับถมของซากพืช ส่วนใหญ่เกิดขึ้นใต้น้ำ   ปิโตรเลียม เป็นเชื้อเพลิงที่ประกอบด้วยสารประกอบไฮโดรคาร์บอนเป็นส่วนใหญ่ มีธาตุอื่นปนมาเพียงเล็กน้อยเท่านั้น ปิโตรเลียมเกิดจากการทับถมของซากสัตว์ ส่วนใหญ่พบในทะเล    
การสำรวจหาแหล่งปิโตรเลียม
การสำรวจหาแหล่งปิโตรเลียม ทำได้หลายวิธี ดังนี้
1. ทางธรณีวิทยา - จากแผนที่ ภาพถายทางอากาศ ภายถายดาวเทียม รายงานทางธรณีวิทยา
2. ทางธรณีฟสิกส  - การหาความเขมของสนามแมเหล็ก แรงโนมถวงของโลก การเคลื่อนไหวสั่นสะเทือนของโลก และ การเจาะสำรวจ
การสำรวจวัดคลื่นไหวสะเทือน (Seismic Exploration)
      การสำรวจวัดคลื่นไหวสะเทือน เป็นการสำรวจเพื่อตรวจสอบลักษณะและโครงสร้างทางธรณีวิทยาใต้ผิวดิน โดยการทำให้เกิดสัญญาณคลื่น แล้ววัดระยะเวลาที่คลื่นเดินทางจากจุดกำเนิด ถึงตัวรับคลื่น (Geophone หรือ Hydrophone) ความเร็วคลื่น จะแปรผันตรงกับความหนาแน่นของชั้นหิน และชนิดของหินนั้น ชั้นหินที่มีความหนาแน่นต่ำ มีความพรุน และมีของเหลวแทรกอยู่ คลื่นเสียงจะเดินทางผ่านได้ช้ากว่า ( ใช้เวลามากกว่า) การเดินทางในชั้นหินที่มีเนื้อแน่นนอกจากนี้รอยเลื่อน และการโค้งงอของชั้นหิน ทำให้เกิดการหักเหของคลื่น แสดงให้เห็นลักษณะโครงสร้างธรณีวิทยาของชั้นหินอีกด้วย
การสำรวจวัดคลื่นไหวสะเทือน เป็นวิธีที่ใช้ในการสำรวจหาปิโตรเลียม มีความถูกต้องสูง ให้รายละเอียดของลักษณะทางธรณีวิทยาได้ดี สำรวจได้ลึกจากผิวดินหลายกิโลเมตร และเสียค่าใช้จ่ายสูง
การสำรวจคลื่นไหวสะเทือนบนพื้นดิน
        แหล่งกำเนิดคลื่น ที่ใช้ในการสำรวจที่อยู่บนผิวดินมี 2 ชนิด คือ ใช้ดินระเบิด และ รถสั่นสะเทือน (Vibroseis) ซึ่งแต่ละชนิด มีความเหมาะสมกับการใช้งานต่าง ๆ กัน การใช้ Vibroseis เหมาะสมกับการสำรวจตามริมถนน ซึ่งสามารถจำกัด Noise ซึ่งเกิดจากการวิ่งของยานพาหนะต่าง ๆ ได้

การสำรวจคลื่นไหวสะเทือนในทะเล อุปกรณ์ที่ใช้ในการสำรวจมีดังนี้
    1. เรือสำรวจพร้อมอุปกรณ์การสำรวจ และระบบสื่อสารที่ทันสมัย เรือสำรวจมีความยาวประมาณ 50- 80 เมตร กว้าง 15- 20 เมตร Tonnage Gross ประมาณ 3,000-6,000 ตัน
    2. อุปกรณ์ต้นกำเนิดสัญญาณคลื่น (Air Gun) เป็นรูปทรงกระบอก ใช้อัดอากาศ ให้มีความดัน ประมาณ 2,000 ปอนด์ต่อตารางนิ้ว แล้วปล่อยอากาศออกมา ทำให้เกิดสัญญาณคลื่น
    3. อุปกรณ์รับสัญญาณคลื่น (Hydrophone) อยู่ลึกจากผิวน้ำ 5- 8 เมตร ต่อพ่วงกัน ยาวประมาณ 3,000 เมตร มีจำนวน 1 สาย หรือมากกว่า ดังนั้นจึงจำเป็นต้องเคลื่อนย้าย สิ่งกีดขว้างต่างๆ ออกจากแนวสำรวจ
การเจาะสำรวจ
การเจาะสำรวจ เป็นขั้นตอนที่จะบอกให้ทราบถึงความยากง่ายของการขุดเจาะปิโตรเลียมมาใช้ และสิ่งที่กักอยู่ในแหล่งนั้น ว่าจะเป็นก๊าซธรรมชาติหรือน้ำมันดิบ และยังเป็นสิ่งที่บอกถึงปริมาณสำรองที่มีอยู่ ซึ่งจะเป็นตัวบอกและตัดสินความเป็นไปได้ในการผลิตในเชิงเศรษฐกิจ


กระบวนการแยกก๊าซธรรมชาติ
ก๊าซธรรมชาติเป็นปิโตรเลียมชนิดหนึ่งที่ประกอบด้วยสารประกอบไฮโดรคาร์บอนหลายชนิดและสารอื่นๆ ที่ไม่ใช่ไฮโดรคาร์บอน ดังตาราง
ตาราง แสดงองค์ประกอบของก๊าซธรรมชาติ
ส่วนประกอบ
สูตรโมเลกุล
ร้อยละโดยปริมาตร
ไฮโดรคาร์บอน
มีเทน
อีเทน
โพรเพน
บิวเทน
เพนเทน
CH 4
C 2H 6
C 3H 8
C 4H 10
C 5H 12
60 – 80
4 – 10
3 – 5
1 – 3
1
ไม่ใช่ไฮโดรคาร์บอน
คาร์บอนไดออกไซด์
ไนโตรเจน
อื่นๆ (ไอน้ำ ฮีเลียม ไฮโดรเจนซัลไฟด์)
CO 2
N 2
-
15 – 25
น้อยกว่า 3
น้อยมาก
       กระบวนการแยกก๊าซธรรมชาติ เริ่มต้นด้วยการกำจัดก๊าซคาร์บอนไดออกไซด์ (CO 2) และน้ำที่เจือปน อยู่ในก๊าซธรรมชาติออกก่อน โดยกระบวนการ Benfield ซึ่งใช้โปตัสเซียมคาร์บอเนต (K 2CO 3) เป็นตัวจับก๊าซคาร์บอนไดออกไซด์ และกระบวนการดูดซับ โดยใช้สารจำพวก molecular sieve ซึ่งมีลักษณะเป็นรูพรุน ทำหน้าที่ดูดซับน้ำ ก๊าซธรรมชาติที่แห้งจากหน่วยนี้จะผ่านเข้าไปใน turbo-expander เพื่อลดอุณหภูมิจาก 250O K เป็น 170O K และลดความดันลงจาก 43 บาร์ เป็น 16 บาร์ก่อนแล้วจึงเข้าสู่หอแยกมีเทน (de-methanizer) มีเทนจะถูกกลั่นแยกออกไป และส่วนที่เหลือคือส่วนผสมของ ก๊าซไฮโดรคาร์บอนที่มีคาร์บอนตั้งแต่ 2 อะตอมขึ้นไป (ethane plus stream) ซึ่งอยู่ในสถานะของเหลวและจะออกทางส่วนล่างของหอ ผลิตภัณฑ์ที่เป็นของเหลวหอดังกล่าวจะถูกนำเข้าสู่หอแยกอีเทน (de-ethanizer) และหอแยกโพรเพน (de-propanizer) เพื่อแยกอีเทนและโพรเพนออกตามลำดับต่อไป ในหอแยกโพรเพนนี้ โพรเพนจะถูกแยกออกทางด้านบนของหอ ส่วนแอพีจี ซึ่งเป็นส่วนผสมของโพรเพนและบิวเทนจะถูกแยกออกมาจากส่วนกลางของหอ และส่วนผลิตภัณฑ์ที่ออกจากหอทางด้านล่างคือ ก๊าซโซลีนธรรมชาติ (natural gasoline)
ภาพแสดงกระบวนการแยกก๊าซธรรมชาติของบริษัท ปตท. จังหวัดระยอง

กระบวนการกลั่นน้ำมันดิบ
       น้ำมันดิบเป็นของผสมที่มีสารประกอบไฮโดรคาร์บอนหลายชนิดปนกัน เนื่องจากสารประกอบไฮโดรคาร์บอนต่างๆ มีประโยชน์ในการใช้งานต่างกัน ดังนั้นจึงจำเป็นต้องแยกสารผสมออกจากกัน โดยอาศัยสมบัติที่ต่างกัน คือ มวลโมเลกุล ความหนาแน่น และจุดเดือด แต่จุดเดือดของสารแต่ละชนิดแตกต่างน้อย จึงต้องแยกสารออกด้วยวิธี การกลั่นลำดับส่วน (Fractional distillation) ดังภาพ
         จากภาพกระบวนการแยกปิโตรเลียมเริ่มจาก การใส่น้ำมันดิบเข้าไปในเตาเพื่อให้ความร้อน น้ำมันดิบจะระเหยขึ้นไปในหอกลั่นในสถานะก๊าซ หอกลั่นลำดับส่วนจะร้อนที่ส่วนล่างและเย็นสงที่ส่วนบน หมายความว่า สารประกอบไฮโดรคาร์บอนขนาดใหญ่ที่มีจุดเดือดสูงจะกลั่นตัวเป็นของเหลวที่ด้านล่างของหอกลั่นที่อุณหภูมิสูงๆ ส่วนสารประกอบไฮโดรคาร์บอนโมเลกุลเล็กจะอยู่ในสถานะก๊าซและลอยตัวสูงขึ้นสู่ชั้นบนหอกลั่น ซึ่งส่วนประกอบแต่ละส่วนจะควบแน่นที่ความสูงต่างกัน โดยส่วนยอดของหอกลั่นจะมีไฮโดรคาร์บอนที่มีจุดเดือดต่ำ ที่อุณหภูมิ 70 º C ไฮโดรคาร์บอนส่วนนี้จะไม่ควบแน่น และออกจากยอดของหอกลั่นในสถานะก๊าซ แต่อย่างไรก็ตามสารที่กลั่นได้ก็ไม่บริสุทธิ์ เพราะมีสารหลายชนิดมีการควบแน่นที่อุณหภูมิใกล้เคียงกัน โดยทั่วไปน้ำมันดิบที่ผ่านกระบวนการกลั่นลำดับส่วนจะได้สารดังแสดงในตารางต่อไปนี้

ตาราง แสดงสารสารประกอบไฮโดรคาร์บอนต่างๆ ที่ได้จากการกลั่นลำดับส่วนของน้ำมันดิบ
ผลิตภัณฑ์ที่ได้
จุดเดือด ( º C )
สถานะ
จำนวนอะตอมของคาร์บอน
ประโยชน์และการนำไปใช้
ก๊าซปิโตรเลียม
ต่ำกว่า 30
ก๊าซ
C 1 – C 4
ทำสารเคมี วัสดุสังเคราะห์ และเชื้อเพลิง
แนฟทาเบา
ต่ำกว่า 70
ของเหลว
C 5 – C 6
น้ำมันเบนซิน
แนฟทาหนัก
70 - 170
ของเหลว
C 6 – C 10
ทำสารเคมี น้ำมันเบนซิน
น้ำมันก๊าด
170 – 250
ของเหลว
C 10 – C 14
เชื้อเพลิงเครื่องบิน และตะเกียง
น้ำมันดีเซล
250 – 340
ของเหลว
C 14 – C 19
เชื้อเพลิงเครื่องยนต์ดีเซล
น้ำมันหล่อลื่น
340 - 500
ของเหลว
C 19 – C 35
น้ำมันหล่อลื่น
ไขพาราฟิน
340 - 500
ของแข็ง
C 19 – C 35
เทียนไข เครื่องสำอาง ยาขัดมัน และวัตถุดิบการผลิตผงซักฟอก
น้ำมันเตา
สูงกว่า 500
ของเหลว
มากกว่า C 35
เชื้อเพลิงเครื่องจักร
บิทูเมน
สูงกว่า 500
ของแข็ง
มากกว่า C 35
ทำยางมะตอย ทำวัสดุกันซึม