ปิโตรเลียม คือ สารที่เกิดขึ้นตามธรรมชาติ เป็นของผสมของโฮโดรคาร์บอนชนิดต่างๆ ที่ยุ่งยากและซับซ้อน ทั้งที่อยู่ในสภาพของแข็ง ของเหลว และก๊าซ หรือทั้งสามสภาพปะปนกัน แต่เมื่อต้องการจะแยกประเภทออกเป็นปิโตรเลียมชนิดต่างๆ จะใช้คำว่า น้ำมันดิบ (Crude oil) ก๊าซธรรมชาติ (Natural gas) และก๊าซธรรมชาติเหลว (Condensate) โดยปกติน้ำมันดิบและก๊าซธรรมชาติมักจะเกิดร่วมกันในแหล่งปิโตรเลียม แต่บางแหล่งอาจมีเฉพาะน้ำมันดิบ บางแหล่งอาจมีเฉพาะก๊าซธรรมชาติก็ได้ ส่วนก๊าซธรรมชาติเหลวนั้นหมายถึง ก๊าซธรรมชาติในแหล่งที่อยู่ลึกลงไปใต้ดินภายใต้สภาพอุณหภูมิและความกดดันที่สูง เมื่อถูกนำขึ้นมาถึงระดับผิวดินในขั้นตอนของการผลิต อุณหภูมิและความกดดันจะลดลง ทำให้ก๊าซธรรมชาติกลายสภาพไปเป็นของเหลว เรียกว่า ก๊าซธรรมชาติเหลว
การกำเนิดปิโตรเลียม
เมื่อหลายล้านปี ทะเละเต็มไปด้วยสัตว์ และพืชเล็ก ๆ จำพวกจุลินทรีย์ เมื่อสิ่งมีชีวิตตายลงจำนวนมหาศาล ก็จะตกลงสู่ก้นทะเล และถูกทับถมด้วยโคลน และทราย
แม่น้ำ จะพัดพากรวดทราย และโคลนสู่ทะเล ปีละหลายแสนตัน ซึ่งกรวด ทราย และโคลน จะทับถมสัตว์ และพืชสลับทับซ้อนกัน เป็นชั้น ๆ อยู่ตลอดเวลา นับเป็นล้านปี
การทับถมของชั้นตะกอนต่าง ๆ มากขึ้น จะหนานับร้อยฟุต ทำให้เพิ่มน้ำหนักความกดและบีบอัด จนทำให้ทราย และชั้นโคลน กลายเป็นหินทราย และหินดินดาน ตลอดจนเกิดกลั่นสลายตัว ของซากสัตว์ และพืชทะเล โดยมีจุลินทรีย์บางชนิดช่วยย่อยสลายในสภาวะที่ไม่มี ออกซิเจน (Anaerobic process) ภายใต้อิทธิพลของอุณหภูมิ และความดันสูง ในชั้นหินภายใต้พื้นโลก กลายเป็นน้ำมันดิบ และก๊าซธรรมชาติ
น้ำมันดิบ และก๊าซธรรมชาติ มีความเบา จะเคลื่อนย้าย ไปกักเก็บอยู่ในชั้นหินเนื้อพรุน เฉพาะบริเวณที่สูงของโครงสร้างแต่ละแห่ง และจะถูกกักไว้ด้วยชั้นหินเนื้อแน่น ที่ปิดทับอยู่
การสำรวจหาแหล่งปิโตรเลียม
การสำรวจหาแหล่งปิโตรเลียม ทำได้หลายวิธี ดังนี้
การสำรวจหาแหล่งปิโตรเลียม ทำได้หลายวิธี ดังนี้
1. ทางธรณีวิทยา - จากแผนที่ ภาพถายทางอากาศ ภายถายดาวเทียม รายงานทางธรณีวิทยา
2. ทางธรณีฟสิกส - การหาความเขมของสนามแมเหล็ก แรงโนมถวงของโลก การเคลื่อนไหวสั่นสะเทือนของโลก และ การเจาะสำรวจ
2. ทางธรณีฟสิกส - การหาความเขมของสนามแมเหล็ก แรงโนมถวงของโลก การเคลื่อนไหวสั่นสะเทือนของโลก และ การเจาะสำรวจ
การสำรวจวัดคลื่นไหวสะเทือน (Seismic Exploration)
การสำรวจวัดคลื่นไหวสะเทือน เป็นการสำรวจเพื่อตรวจสอบลักษณะและโครงสร้างทางธรณีวิทยาใต้ผิวดิน โดยการทำให้เกิดสัญญาณคลื่น แล้ววัดระยะเวลาที่คลื่นเดินทางจากจุดกำเนิด ถึงตัวรับคลื่น (Geophone หรือ Hydrophone) ความเร็วคลื่น จะแปรผันตรงกับความหนาแน่นของชั้นหิน และชนิดของหินนั้น ชั้นหินที่มีความหนาแน่นต่ำ มีความพรุน และมีของเหลวแทรกอยู่ คลื่นเสียงจะเดินทางผ่านได้ช้ากว่า ( ใช้เวลามากกว่า) การเดินทางในชั้นหินที่มีเนื้อแน่นนอกจากนี้รอยเลื่อน และการโค้งงอของชั้นหิน ทำให้เกิดการหักเหของคลื่น แสดงให้เห็นลักษณะโครงสร้างธรณีวิทยาของชั้นหินอีกด้วย
การสำรวจวัดคลื่นไหวสะเทือน เป็นวิธีที่ใช้ในการสำรวจหาปิโตรเลียม มีความถูกต้องสูง ให้รายละเอียดของลักษณะทางธรณีวิทยาได้ดี สำรวจได้ลึกจากผิวดินหลายกิโลเมตร และเสียค่าใช้จ่ายสูง
การสำรวจคลื่นไหวสะเทือนบนพื้นดิน
แหล่งกำเนิดคลื่น ที่ใช้ในการสำรวจที่อยู่บนผิวดินมี 2 ชนิด คือ ใช้ดินระเบิด และ รถสั่นสะเทือน (Vibroseis) ซึ่งแต่ละชนิด มีความเหมาะสมกับการใช้งานต่าง ๆ กัน การใช้ Vibroseis เหมาะสมกับการสำรวจตามริมถนน ซึ่งสามารถจำกัด Noise ซึ่งเกิดจากการวิ่งของยานพาหนะต่าง ๆ ได้
การสำรวจคลื่นไหวสะเทือนในทะเล อุปกรณ์ที่ใช้ในการสำรวจมีดังนี้
1. เรือสำรวจพร้อมอุปกรณ์การสำรวจ และระบบสื่อสารที่ทันสมัย เรือสำรวจมีความยาวประมาณ 50- 80 เมตร กว้าง 15- 20 เมตร Tonnage Gross ประมาณ 3,000-6,000 ตัน
2. อุปกรณ์ต้นกำเนิดสัญญาณคลื่น (Air Gun) เป็นรูปทรงกระบอก ใช้อัดอากาศ ให้มีความดัน ประมาณ 2,000 ปอนด์ต่อตารางนิ้ว แล้วปล่อยอากาศออกมา ทำให้เกิดสัญญาณคลื่น
3. อุปกรณ์รับสัญญาณคลื่น (Hydrophone) อยู่ลึกจากผิวน้ำ 5- 8 เมตร ต่อพ่วงกัน ยาวประมาณ 3,000 เมตร มีจำนวน 1 สาย หรือมากกว่า ดังนั้นจึงจำเป็นต้องเคลื่อนย้าย สิ่งกีดขว้างต่างๆ ออกจากแนวสำรวจ
2. อุปกรณ์ต้นกำเนิดสัญญาณคลื่น (Air Gun) เป็นรูปทรงกระบอก ใช้อัดอากาศ ให้มีความดัน ประมาณ 2,000 ปอนด์ต่อตารางนิ้ว แล้วปล่อยอากาศออกมา ทำให้เกิดสัญญาณคลื่น
3. อุปกรณ์รับสัญญาณคลื่น (Hydrophone) อยู่ลึกจากผิวน้ำ 5- 8 เมตร ต่อพ่วงกัน ยาวประมาณ 3,000 เมตร มีจำนวน 1 สาย หรือมากกว่า ดังนั้นจึงจำเป็นต้องเคลื่อนย้าย สิ่งกีดขว้างต่างๆ ออกจากแนวสำรวจ
การเจาะสำรวจ
การเจาะสำรวจ เป็นขั้นตอนที่จะบอกให้ทราบถึงความยากง่ายของการขุดเจาะปิโตรเลียมมาใช้ และสิ่งที่กักอยู่ในแหล่งนั้น ว่าจะเป็นก๊าซธรรมชาติหรือน้ำมันดิบ และยังเป็นสิ่งที่บอกถึงปริมาณสำรองที่มีอยู่ ซึ่งจะเป็นตัวบอกและตัดสินความเป็นไปได้ในการผลิตในเชิงเศรษฐกิจ
กระบวนการแยกก๊าซธรรมชาติ
ก๊าซธรรมชาติเป็นปิโตรเลียมชนิดหนึ่งที่ประกอบด้วยสารประกอบไฮโดรคาร์บอนหลายชนิดและสารอื่นๆ ที่ไม่ใช่ไฮโดรคาร์บอน ดังตาราง
ตาราง แสดงองค์ประกอบของก๊าซธรรมชาติ
ส่วนประกอบ
|
สูตรโมเลกุล
|
ร้อยละโดยปริมาตร
| |
ไฮโดรคาร์บอน
|
มีเทน
อีเทน โพรเพน บิวเทน เพนเทน |
CH 4
C 2H 6 C 3H 8 C 4H 10 C 5H 12 |
60 – 80
4 – 10 3 – 5 1 – 3 1 |
ไม่ใช่ไฮโดรคาร์บอน
|
คาร์บอนไดออกไซด์
ไนโตรเจน อื่นๆ (ไอน้ำ ฮีเลียม ไฮโดรเจนซัลไฟด์) |
CO 2
N 2 - |
15 – 25
น้อยกว่า 3 น้อยมาก |
กระบวนการแยกก๊าซธรรมชาติ เริ่มต้นด้วยการกำจัดก๊าซคาร์บอนไดออกไซด์ (CO 2) และน้ำที่เจือปน อยู่ในก๊าซธรรมชาติออกก่อน โดยกระบวนการ Benfield ซึ่งใช้โปตัสเซียมคาร์บอเนต (K 2CO 3) เป็นตัวจับก๊าซคาร์บอนไดออกไซด์ และกระบวนการดูดซับ โดยใช้สารจำพวก molecular sieve ซึ่งมีลักษณะเป็นรูพรุน ทำหน้าที่ดูดซับน้ำ ก๊าซธรรมชาติที่แห้งจากหน่วยนี้จะผ่านเข้าไปใน turbo-expander เพื่อลดอุณหภูมิจาก 250O K เป็น 170O K และลดความดันลงจาก 43 บาร์ เป็น 16 บาร์ก่อนแล้วจึงเข้าสู่หอแยกมีเทน (de-methanizer) มีเทนจะถูกกลั่นแยกออกไป และส่วนที่เหลือคือส่วนผสมของ ก๊าซไฮโดรคาร์บอนที่มีคาร์บอนตั้งแต่ 2 อะตอมขึ้นไป (ethane plus stream) ซึ่งอยู่ในสถานะของเหลวและจะออกทางส่วนล่างของหอ ผลิตภัณฑ์ที่เป็นของเหลวหอดังกล่าวจะถูกนำเข้าสู่หอแยกอีเทน (de-ethanizer) และหอแยกโพรเพน (de-propanizer) เพื่อแยกอีเทนและโพรเพนออกตามลำดับต่อไป ในหอแยกโพรเพนนี้ โพรเพนจะถูกแยกออกทางด้านบนของหอ ส่วนแอพีจี ซึ่งเป็นส่วนผสมของโพรเพนและบิวเทนจะถูกแยกออกมาจากส่วนกลางของหอ และส่วนผลิตภัณฑ์ที่ออกจากหอทางด้านล่างคือ ก๊าซโซลีนธรรมชาติ (natural gasoline)
ภาพแสดงกระบวนการแยกก๊าซธรรมชาติของบริษัท ปตท. จังหวัดระยอง
กระบวนการกลั่นน้ำมันดิบ
น้ำมันดิบเป็นของผสมที่มีสารประกอบไฮโดรคาร์บอนหลายชนิดปนกัน เนื่องจากสารประกอบไฮโดรคาร์บอนต่างๆ มีประโยชน์ในการใช้งานต่างกัน ดังนั้นจึงจำเป็นต้องแยกสารผสมออกจากกัน โดยอาศัยสมบัติที่ต่างกัน คือ มวลโมเลกุล ความหนาแน่น และจุดเดือด แต่จุดเดือดของสารแต่ละชนิดแตกต่างน้อย จึงต้องแยกสารออกด้วยวิธี การกลั่นลำดับส่วน (Fractional distillation) ดังภาพ
จากภาพกระบวนการแยกปิโตรเลียมเริ่มจาก การใส่น้ำมันดิบเข้าไปในเตาเพื่อให้ความร้อน น้ำมันดิบจะระเหยขึ้นไปในหอกลั่นในสถานะก๊าซ หอกลั่นลำดับส่วนจะร้อนที่ส่วนล่างและเย็นสงที่ส่วนบน หมายความว่า สารประกอบไฮโดรคาร์บอนขนาดใหญ่ที่มีจุดเดือดสูงจะกลั่นตัวเป็นของเหลวที่ด้านล่างของหอกลั่นที่อุณหภูมิสูงๆ ส่วนสารประกอบไฮโดรคาร์บอนโมเลกุลเล็กจะอยู่ในสถานะก๊าซและลอยตัวสูงขึ้นสู่ชั้นบนหอกลั่น ซึ่งส่วนประกอบแต่ละส่วนจะควบแน่นที่ความสูงต่างกัน โดยส่วนยอดของหอกลั่นจะมีไฮโดรคาร์บอนที่มีจุดเดือดต่ำ ที่อุณหภูมิ 70 º C ไฮโดรคาร์บอนส่วนนี้จะไม่ควบแน่น และออกจากยอดของหอกลั่นในสถานะก๊าซ แต่อย่างไรก็ตามสารที่กลั่นได้ก็ไม่บริสุทธิ์ เพราะมีสารหลายชนิดมีการควบแน่นที่อุณหภูมิใกล้เคียงกัน โดยทั่วไปน้ำมันดิบที่ผ่านกระบวนการกลั่นลำดับส่วนจะได้สารดังแสดงในตารางต่อไปนี้
ตาราง แสดงสารสารประกอบไฮโดรคาร์บอนต่างๆ ที่ได้จากการกลั่นลำดับส่วนของน้ำมันดิบ
ผลิตภัณฑ์ที่ได้
|
จุดเดือด ( º C )
|
สถานะ
|
จำนวนอะตอมของคาร์บอน
|
ประโยชน์และการนำไปใช้
|
ก๊าซปิโตรเลียม |
ต่ำกว่า 30
|
ก๊าซ
|
C 1 – C 4
| ทำสารเคมี วัสดุสังเคราะห์ และเชื้อเพลิง |
แนฟทาเบา |
ต่ำกว่า 70
|
ของเหลว
|
C 5 – C 6
| น้ำมันเบนซิน |
แนฟทาหนัก |
70 - 170
|
ของเหลว
|
C 6 – C 10
| ทำสารเคมี น้ำมันเบนซิน |
น้ำมันก๊าด |
170 – 250
|
ของเหลว
|
C 10 – C 14
| เชื้อเพลิงเครื่องบิน และตะเกียง |
น้ำมันดีเซล |
250 – 340
|
ของเหลว
|
C 14 – C 19
| เชื้อเพลิงเครื่องยนต์ดีเซล |
น้ำมันหล่อลื่น |
340 - 500
|
ของเหลว
|
C 19 – C 35
| น้ำมันหล่อลื่น |
ไขพาราฟิน |
340 - 500
|
ของแข็ง
|
C 19 – C 35
| เทียนไข เครื่องสำอาง ยาขัดมัน และวัตถุดิบการผลิตผงซักฟอก |
น้ำมันเตา |
สูงกว่า 500
|
ของเหลว
|
มากกว่า C 35
| เชื้อเพลิงเครื่องจักร |
บิทูเมน |
สูงกว่า 500
|
ของแข็ง
|
มากกว่า C 35
| ทำยางมะตอย ทำวัสดุกันซึม |
ไม่มีความคิดเห็น:
แสดงความคิดเห็น